
CS61B Spring 2024

ADTs, Asymptotics II, BSTs
Discussion 06

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

2/26
Lab 5 Due

Homework 2 Due

3/1
Lab 6 Due

3/6
Project 2A Due

3/8
Lab 7 Due

CS61B Spring 2024

Content Review

CS61B Spring 2024

Abstract Data Types

Abstract Data Types are data structures where we know what they do but not how. They are usually

represented as interfaces or abstract classes in Java.

List

ArrayList

LinkedList

Map

HashMap

TreeMap

Set

HashSet

TreeSet

Queue

Stack

● Ordered
collection

● Allows
duplicates

● Associates a
key with a
value

● No duplicate
keys

● Unordered
collection

● No duplicates

● Queue = FIFO
● Stack = LIFO

CS61B Spring 2024

Asymptotics Advice
● Asymptotic analysis is only valid on very large inputs, and comparisons between runtimes is only useful

when comparing inputs of different orders of magnitude.

● Use Θ where you can, but won’t always have tight bound (usually default to O)

● Reminder: total work done = sum of all work per iteration or recursive call

● While common themes are helpful, rules like “nested for loops are always N2” can easily lead you astray

(pay close attention to stopping conditions and how variables update)

● Drop lower-order terms (ie. n3 + 10000n2 - 5000000 -> Θ(n3))

CS61B Spring 2024

Asymptotics Advice
● For recursive problems, it’s helpful to draw out the tree/structure of method calls

● Things to consider in your drawing and calculations of total work:

○ Height of tree: how many levels will it take for you to reach the base case?

○ Branching factor: how many times does the function call itself in the body of the function?

○ Work per node: how much actual work is done per function call?

● Life hack pattern matching when calculating total work where f(N) is some function of N

○ 1 + 2 + 3 + 4 + 5 + … + f(N) = [f(N)]2

○ 1 + 2 + 4 + 8 + 16 + … + f(N) = f(N)

■ Rule applies with any geometric factor between terms, like 1 + 3 + 9 + … + f(N)

CS61B Spring 2024

Asymptotics Advice

● Doing problems graphically can be helpful if you’re a visual learner (plot variable values and calculate

area formula):

for (int i = 0; i < N; i++) {
for (int j = 0; j < i; j++) {

/* Something constant */
}

}

j

i

N

N0

½ N2 = N2

CS61B Spring 2024

Binary Search Trees are data structures that allow us to quickly access elements in sorted order. They have

several important properties:

1. Each node in a BST is a root of a smaller BST

2. Every node to the left of a root has a value “lesser than” that of the root

3. Every node to the right of a root has a value “greater than” that of the root

BSTs can be bushy or spindly:

Binary Search Trees

5

3 7

6 91 4

2

3

1

Spindly, O(N)

Bushy, O(logN)

CS61B Spring 2024

CS61B Spring 2024

Items in a BST are always inserted as leaves.

BST Insertion

5

3 7

6 91 4

insert(2)

2
5

3 7

6 91 4

2

CS61B Spring 2024

Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:

BST Deletion

5

3 7

6 91 4

delete(2)

5

3 7

6 91 4

2

In this case, the node has no children so deletion is an easy process.

2

CS61B Spring 2024

Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:

BST Deletion

5

3 7

6 91 4

delete(1)

5

3 7

6 91 4

2

In this case, the node has one child, so it simply replaces the deleted node, and then we act as if the child was

deleted in a recursive pattern until we hit a leaf.

2

CS61B Spring 2024

Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:

BST Deletion

5

3 7

6 91 4

delete(5)

5

3 7

6 91 4

2

In this case, the node has two children, so we pick either the leftmost node in the right subtree or the

rightmost node in the left subtree.

2

CS61B Spring 2024

Worksheet

CS61B Spring 2024

1 ADT Matchmaking Match each task to the correct Abstract Data Type for the
job.

1) You want to keep track of all the unique users

who have logged on to your system.

2) You are creating a version control system and

want to associate each file name with a Blob.

3) We are grading a pile of exams and want to

grade starting from the top of the pile.

4) We are running a server and want to service

clients in the order they arrive.

5) We have a lot of books at our library and we

want our website to display them in some

sorted order. We have multiple copies of some

books and we want each listing to be separate.

Options:
● List
● Map
● Queue
● Set
● Stack

CS61B Spring 2024

1 ADT Matchmaking Match each task to the correct Abstract Data Type for the
job.

1) You want to keep track of all the unique users

who have logged on to your system.

2) You are creating a version control system and

want to associate each file name with a Blob.

3) We are grading a pile of exams and want to

grade starting from the top of the pile.

4) We are running a server and want to service

clients in the order they arrive.

5) We have a lot of books at our library and we

want our website to display them in some

sorted order. We have multiple copies of some

books and we want each listing to be separate.

Set

CS61B Spring 2024

1 ADT Matchmaking Match each task to the correct Abstract Data Type for the
job.

1) You want to keep track of all the unique users

who have logged on to your system.

2) You are creating a version control system and

want to associate each file name with a Blob.

3) We are grading a pile of exams and want to

grade starting from the top of the pile.

4) We are running a server and want to service

clients in the order they arrive.

5) We have a lot of books at our library and we

want our website to display them in some

sorted order. We have multiple copies of some

books and we want each listing to be separate.

Set

Map

CS61B Spring 2024

1 ADT Matchmaking Match each task to the correct Abstract Data Type for the
job.

1) You want to keep track of all the unique users

who have logged on to your system.

2) You are creating a version control system and

want to associate each file name with a Blob.

3) We are grading a pile of exams and want to

grade starting from the top of the pile.

4) We are running a server and want to service

clients in the order they arrive.

5) We have a lot of books at our library and we

want our website to display them in some

sorted order. We have multiple copies of some

books and we want each listing to be separate.

Set

Map

Stack

CS61B Spring 2024

1 ADT Matchmaking Match each task to the correct Abstract Data Type for the
job.

1) You want to keep track of all the unique users

who have logged on to your system.

2) You are creating a version control system and

want to associate each file name with a Blob.

3) We are grading a pile of exams and want to

grade starting from the top of the pile.

4) We are running a server and want to service

clients in the order they arrive.

5) We have a lot of books at our library and we

want our website to display them in some

sorted order. We have multiple copies of some

books and we want each listing to be separate.

Set

Map

Stack

Queue

CS61B Spring 2024

1 ADT Matchmaking Match each task to the correct Abstract Data Type for the
job.

1) You want to keep track of all the unique users

who have logged on to your system.

2) You are creating a version control system and

want to associate each file name with a Blob.

3) We are grading a pile of exams and want to

grade starting from the top of the pile.

4) We are running a server and want to service

clients in the order they arrive.

5) We have a lot of books at our library and we

want our website to display them in some

sorted order. We have multiple copies of some

books and we want each listing to be separate.

Set

Map

Stack

Queue

List

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(N)

public static void f1(int N) {

for (int i = 1; i < N; ____________){

System.out.println("hi Dom");

}

} i 1 ? ? … < N

work per i 1 1 1 … 1

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(N)

public static void f1(int N) {

for (int i = 1; i < N; i += 1){

System.out.println("hi Dom");

}

} i 1 2 3 … N - 1

work per i 1 1 1 … 1

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(logN)

public static void f2(int N) {

for (int i = 1; i < N; ____________) {

System.out.println("howdy Ergun");

}

} i 1 ? ? … < N

work per i 1 1 1 … 1

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(logN)

public static void f2(int N) {

for (int i = 1; i < N; i *= 2) {

System.out.println("howdy Ergun");

}

} i 1 2 4 … N/2

work per i 1 1 1 … 1

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(1)

public static void f3(int N) {

for (int i = 1; ____________; i += 1) {

System.out.println("hello Anniyat");

}

} i 1 2 3 … ?

work per i 1 1 1 … 1

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(1)

public static void f3(int N) {

for (int i = 1; i < 1000; i += 1) {

System.out.println("hello Anniyat");

}

} i 1 2 3 … 999

work per i 1 1 1 … 1

* Note that the solution is
actually just i < C, where C
is some constant independent
of the input N.

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(2N)

// This one is tricky!

// Hint: think about the sum for 1 + 2 + 4 + ... + f(N)

public static void f4(int N) {

for (int i = 1; ____________; i *= 2) {

for (int j = 0; j < i; j += 1) {

System.out.println("what's up Alyssa");

}

}

}

i 1 2 4 … ?

work per i 1 2 4 … < i

CS61B Spring 2024

2A I Am Speed Fill in the blank(s) so that the function has the desired runtime. .

// Desired Runtime: Θ(2N)

// This one is tricky!

// Hint: think about the sum for 1 + 2 + 4 + ... + f(N)

public static void f4(int N) {

for (int i = 1; i < Math.pow(2, N); i *= 2) {

for (int j = 0; j < i; j += 1) {

System.out.println("what's up Alyssa");

}

}

}

i 1 2 4 … 2N - 1

work per i 1 2 4 … 2N - 1

CS61B Spring 2024

2B I Am Speed (Extra) Give the worst case and best case running time in ϴ(⋅)
notation in terms of M and N. Assume that kachow() is in ϴ(N2) and returns a boolean.

for (int i = 0; i < N; i += 1) {
for (int j = 1; j < M;) {

if (kachow()) {
j += 1;

} else {
j *= 2;

}
}

}

CS61B Spring 2024

2B I Am Speed (Extra) Give the worst case and best case running time in ϴ(⋅)
notation in terms of M and N. Assume that kachow() is in ϴ(N2) and returns a boolean.

for (int i = 0; i < N; i += 1) {
for (int j = 1; j < M;) {

if (kachow()) {
j += 1;

} else {
j *= 2;

}
}

}

i 0 1 … N - 1

Best case
work per i

N2log(M) N2log(M) … N2log(M)

Worst case
work per i

N2(M - 1) N2(M - 1) … N2(M - 1)

Best: Θ(N3logM)

Worst: Θ(N3M)

CS61B Spring 2024

3a Re-cursed with asymptotics What is the runtime in terms of n?

public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

CS61B Spring 2024

3a Re-cursed with asymptotics What is the runtime in terms of n?

public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

● height of tree: N
● branching factor: 1
● work per node: 1

CS61B Spring 2024

3a Re-cursed with asymptotics What is the runtime in terms of n?

public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

1 curse(n)

CS61B Spring 2024

3a Re-cursed with asymptotics What is the runtime in terms of n?

public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

1

1

curse(n)

curse(n - 1)

CS61B Spring 2024

3a Re-cursed with asymptotics What is the runtime in terms of n?

public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

1

1

1

curse(n)

curse(n - 1)

curse(n - 2)

CS61B Spring 2024

3a Re-cursed with asymptotics What is the runtime in terms of n?

public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

1

1

1

1

…

curse(n)

curse(n - 1)

curse(n - 2)

…

curse(0)

CS61B Spring 2024

3a Re-cursed with asymptotics What is the runtime in terms of n?

public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

Runtime: Θ(N)
● 1 total work per level *

N levels = N

1

1

1

1

…

curse(n)

curse(n - 1)

curse(n - 2)

…

curse(0)

CS61B Spring 2024

3b Re-cursed with asymptotics Can you find a runtime bound for the code
below? Assume the System.arraycopy method takes ϴ(N) time, where N is the size of the input array.

public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");

 return;
 }

 int newLen = arr.length / 2
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf,
0, newLen);
 System.arraycopy(arr, newLen,
secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

CS61B Spring 2024

3b Re-cursed with asymptotics Can you find a runtime bound for the code
below? Assume the System.arraycopy method takes ϴ(N) time, where N is the size of the input array.

public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");

 return;
 }

 int newLen = arr.length / 2
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf,
0, newLen);
 System.arraycopy(arr, newLen,
secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

● height of tree: logN
● branching factor: 2
● work per node: N

(arr.length)

CS61B Spring 2024

3b Re-cursed with asymptotics Can you find a runtime bound for the code
below? Assume the System.arraycopy method takes ϴ(N) time, where N is the size of the input array.

public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");

 return;
 }

 int newLen = arr.length / 2
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf,
0, newLen);
 System.arraycopy(arr, newLen,
secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

N
silly(arr)

CS61B Spring 2024

3b Re-cursed with asymptotics Can you find a runtime bound for the code
below? Assume the System.arraycopy method takes ϴ(N) time, where N is the size of the input array.

public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");

 return;
 }

 int newLen = arr.length / 2
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf,
0, newLen);
 System.arraycopy(arr, newLen,
secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

N
silly(arr)

N/2 N/2
silly(half of arr)

CS61B Spring 2024

3b Re-cursed with asymptotics Can you find a runtime bound for the code
below? Assume the System.arraycopy method takes ϴ(N) time, where N is the size of the input array.

public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");

 return;
 }

 int newLen = arr.length / 2
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf,
0, newLen);
 System.arraycopy(arr, newLen,
secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

N
silly(arr)

N/2 N/2

N/4 N/4 N/4 N/4

silly(half of arr)

silly(qtr of arr)

CS61B Spring 2024

3b Re-cursed with asymptotics Can you find a runtime bound for the code
below? Assume the System.arraycopy method takes ϴ(N) time, where N is the size of the input array.

public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");

 return;
 }

 int newLen = arr.length / 2
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf,
0, newLen);
 System.arraycopy(arr, newLen,
secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

Nsilly(arr)

N/2 N/2

N/4 N/4 N/4 N/4

… … …… …

1 1 1 1 1

silly(half of arr)

silly(qtr of arr)

silly(1
elem of
arr)

CS61B Spring 2024

3b Re-cursed with asymptotics Can you find a runtime bound for the code
below? Assume the System.arraycopy method takes ϴ(N) time, where N is the size of the input array.

public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");

 return;
 }

 int newLen = arr.length / 2
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf,
0, newLen);
 System.arraycopy(arr, newLen,
secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

N
silly(arr)

N/2 N/2

N/4 N/4 N/4 N/4

… … …… …

1 1 1 1 1

silly(half of arr)

silly(qtr of arr)

silly(1
elem of
arr)

Runtime: Θ(NlogN)
● N total work

per level *
logN levels

CS61B Spring 2024

3c Re-cursed with asymptotics Given that exponentialWork runs in Θ(3N
) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 ronnie(N - 2);
 ronnie(N - 2);
 ronnie(N - 2);
 exponentialWork(N);
}

CS61B Spring 2024

3c Re-cursed with asymptotics Given that exponentialWork runs in Θ(3N
) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 ronnie(N - 2);
 ronnie(N - 2);
 ronnie(N - 2);
 exponentialWork(N);
}

● height of tree: N/2
● branching factor: 3
● work per node: 3N

CS61B Spring 2024

3c Re-cursed with asymptotics Given that exponentialWork runs in Θ(3N
) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 ronnie(N - 2);
 ronnie(N - 2);
 ronnie(N - 2);
 exponentialWork(N);
}

3N ronnie(N)

CS61B Spring 2024

3c Re-cursed with asymptotics Given that exponentialWork runs in Θ(3N
) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 ronnie(N - 2);
 ronnie(N - 2);
 ronnie(N - 2);
 exponentialWork(N);
}

3N ronnie(N)

3N-2 3N-23N-2

ronnie(N-2)

CS61B Spring 2024

3c Re-cursed with asymptotics Given that exponentialWork runs in Θ(3N
) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 ronnie(N - 2);
 ronnie(N - 2);
 ronnie(N - 2);
 exponentialWork(N);
}

3N ronnie(N)

3N-2 3N-2

3N-4 3N-43N-43N-43N-43N-4

3N-2

3N-4 3N-43N-4

ronnie(N-2)

ronnie(N-4)

CS61B Spring 2024

3c Re-cursed with asymptotics Given that exponentialWork runs in Θ(3N
) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 ronnie(N - 2);
 ronnie(N - 2);
 ronnie(N - 2);
 exponentialWork(N);
}

3N ronnie(N)

3N-2 3N-2

3N-4 3N-43N-43N-43N-43N-4

3N-2

3N-4 3N-43N-4

ronnie(N-2)

ronnie(N-4)………

1 11111 1 11

ronnie(1)

CS61B Spring 2024

3c Re-cursed with asymptotics Given that exponentialWork runs in Θ(3N
) time with respect to input N, what is the runtime of ronnie?

public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 ronnie(N - 2);
 ronnie(N - 2);
 ronnie(N - 2);
 exponentialWork(N);
}

3N ronnie(N)

3N-2 3N-2

3N-4 3N-43N-43N-43N-43N-4

3N-2

3N-4 3N-43N-4

ronnie(N-2)

ronnie(N-4)………

1 11111 1 11

ronnie(1)

Total work = 3N + 3*3N-2 +
9*3N-4 + … + 3N/2*1

= 3N + 3N-1 + 3N-2 + … + 3N/2

Runtime: Θ(3N)

CS61B Spring 2024

4a BST Asymptotics What is the runtime for find on a perfectly bushy BST in terms of
N, the number of nodes in the tree? Can we generalize the runtime to a tight bound?

public static BST find(BST tree, Key sk) {
if (tree == null) {

return null;
}
if (sk.compareTo(tree.key) == 0)) {

return tree;
} else if (sk.compareTo(tree.key) < 0) {

return find(tree.left, sk);
} else {

return find(tree.right, sk);
}

}

CS61B Spring 2024

4a BST Asymptotics What is the runtime for find on a perfectly bushy BST in terms of
N, the number of nodes in the tree? Can we generalize the runtime to a tight bound?

public static BST find(BST tree, Key sk) {
if (tree == null) {

return null;
}
if (sk.compareTo(tree.key) == 0)) {

return tree;
} else if (sk.compareTo(tree.key) < 0) {

return find(tree.left, sk);
} else {

return find(tree.right, sk);
}

}

Runtime: O(logN)

Cannot generalize to tight bound
because lower and upper bound are
different

● Lower: Ω(1)
○ find was called on the

root’s key

● Upper: O(logN)
○ find was called on a

leaf’s key

CS61B Spring 2024

4b BST Asymptotics In what order should we insert the keys [6, 2, 5, 9, 0, -3] to the
BST such that the runtime of a single find operation after all keys are inserted is O(N)? Draw out the
resulting BST.
public static BST find(BST tree, Key sk) {

if (tree == null) {
return null;

}
if (sk.compareTo(tree.key) == 0)) {

return tree;
} else if (sk.compareTo(tree.key) < 0) {

return find(tree.left, sk);
} else {

return find(tree.right, sk);
}

}

CS61B Spring 2024

4b BST Asymptotics In what order should we insert the keys [6, 2, 5, 9, 0, -3] to the
BST such that the runtime of a single find operation after all keys are inserted is O(N)? Draw out the
resulting BST.
public static BST find(BST tree, Key sk) {

if (tree == null) {
return null;

}
if (sk.compareTo(tree.key) == 0)) {

return tree;
} else if (sk.compareTo(tree.key) < 0) {

return find(tree.left, sk);
} else {

return find(tree.right, sk);
}

}

In either ascending or descending sorted
order. Ascending tree:

-3

0

2

5

6

9

